enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [9] for a total of approximately 2n 3 /3 operations.

  3. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    The field of elimination theory was motivated by the need of methods for solving systems of polynomial equations. One of the first results was Bézout's theorem, which bounds the number of solutions (in the case of two polynomials in two variables at Bézout time).

  4. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: In the first equation, solve for one of the variables in terms of the others. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown.

  5. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  6. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The above procedure can be repeatedly applied to solve the equation multiple times for different b. In this case it is faster (and more convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than using Gaussian elimination each time

  7. Elimination - Wikipedia

    en.wikipedia.org/wiki/Elimination

    Elimination theory, the theory of the methods to eliminate variables between polynomial equations. Disjunctive syllogism, a rule of inference; Gaussian elimination, a method of solving systems of linear equations; Fourier–Motzkin elimination, an algorithm for reducing systems of linear inequalities

  8. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.

  9. Linear equation over a ring - Wikipedia

    en.wikipedia.org/wiki/Linear_equation_over_a_ring

    In fact, solving the submodule membership problem is what is commonly called solving the system, and solving the syzygy problem is the computation of the null space of the matrix of a system of linear equations. The basic algorithm for both problems is Gaussian elimination.