enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  3. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  4. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The curvature is the reciprocal of radius of curvature. That is, the curvature is =, where R is the radius of curvature [5] (the whole circle has this curvature, it can be read as turn 2π over the length 2π R). This definition is difficult to manipulate and to express in formulas.

  5. Track geometry - Wikipedia

    en.wikipedia.org/wiki/Track_geometry

    The angle between the radii lines is the degree of curvature. [10] The degree of curvature is inverse of radius. The larger the degree of curvature, the sharper the curve is. Expressing the curve in this way allows surveyors to use estimation and simpler tools in curve measurement.

  6. Minimum railway curve radius - Wikipedia

    en.wikipedia.org/wiki/Minimum_railway_curve_radius

    The minimum railway curve radius is the shortest allowable design radius for the centerline of railway tracks under a particular set of conditions. It has an important bearing on construction costs and operating costs and, in combination with superelevation (difference in elevation of the two rails) in the case of train tracks , determines the ...

  7. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    Animation depicting evolution of a Cornu spiral with the tangential circle with the same radius of curvature as at its tip, also known as an osculating circle.. To travel along a circular path, an object needs to be subject to a centripetal acceleration (for example: the Moon circles around the Earth because of gravity; a car turns its front wheels inward to generate a centripetal force).

  8. Geometric design of roads - Wikipedia

    en.wikipedia.org/wiki/Geometric_design_of_roads

    Circular curves are defined by radius (tightness) and deflection angle (extent). The design of a horizontal curve entails the determination of a minimum radius (based on speed limit), curve length, and objects obstructing the view of the driver. [4] Using AASHTO standards, an engineer works to design a road that is safe and comfortable.

  9. Meridian arc - Wikipedia

    en.wikipedia.org/wiki/Meridian_arc

    On an ellipsoid of revolution, for short meridian arcs, their length can be approximated using the Earth's meridional radius of curvature and the circular arc formulation. For longer arcs, the length follows from the subtraction of two meridian distances, the distance from the equator to a point at a latitude φ.