Search results
Results from the WOW.Com Content Network
A Sudoku starts with some cells containing numbers (clues), and the goal is to solve the remaining cells. Proper Sudokus have one solution. [1] Players and investigators use a wide range of computer algorithms to solve Sudokus, study their properties, and make new puzzles, including Sudokus with interesting symmetries and other properties.
A Sudoku whose regions are not (necessarily) square or rectangular is known as a Jigsaw Sudoku. In particular, an N × N square where N is prime can only be tiled with irregular N -ominoes . For small values of N the number of ways to tile the square (excluding symmetries) has been computed (sequence A172477 in the OEIS ). [ 10 ]
The world's first live TV Sudoku show, held on July 1, 2005, Sky One. The world's first live TV Sudoku show, Sudoku Live, was a puzzle contest first broadcast on July 1, 2005, on the British pay-television channel Sky One. It was presented by Carol Vorderman. Nine teams of nine players (with one celebrity in each team) representing geographical ...
A Sudoku variant with prime N (7×7) and solution. (with Japanese symbols). Overlapping grids. The classic 9×9 Sudoku format can be generalized to an N×N row-column grid partitioned into N regions, where each of the N rows, columns and regions have N cells and each of the N digits occur once in each row, column or region.
After an introductory chapter on Sudoku and its deductive puzzle-solving techniques [1] (also touching on Euler tours and Hamiltonian cycles), [5] the book has eight more chapters and an epilogue. Chapters two and three discuss Latin squares , the thirty-six officers problem , Leonhard Euler 's incorrect conjecture on Graeco-Latin squares , and ...
The constraints of Sudoku codes are non-linear: all symbols within a constraint (row, line, sub-grid) must be different from any other symbol within this constraint. Hence there is no all-zero codeword in Sudoku codes. Sudoku codes can be represented by probabilistic graphical model in which they take the form of a low-density parity-check code ...
Backtracking is an important tool for solving constraint satisfaction problems, [2] such as crosswords, verbal arithmetic, Sudoku, and many other puzzles. It is often the most convenient technique for parsing, [3] for the knapsack problem and other combinatorial optimization problems.
This is a list of some of the more commonly known problems that are NP-complete when expressed as decision problems. As there are thousands of such problems known, this list is in no way comprehensive. Many problems of this type can be found in Garey & Johnson (1979).