Search results
Results from the WOW.Com Content Network
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
All differentiation rules can also be reframed as rules involving limits. For example, if g(x) is differentiable at x,
Chain rule – For derivatives of composed functions; Difference quotient – Expression in calculus; Differentiation of integrals – Problem in mathematics; Differentiation rules – Rules for computing derivatives of functions; General Leibniz rule – Generalization of the product rule in calculus
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.
The chain rule can be used to derive some well-known differentiation rules. For example, the quotient rule is a consequence of the chain rule and the product rule . To see this, write the function f ( x )/ g ( x ) as the product f ( x ) · 1/ g ( x ) .
Pages in category "Differentiation rules" The following 11 pages are in this category, out of 11 total. This list may not reflect recent changes. ...
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.