Search results
Results from the WOW.Com Content Network
For example, the two diatomic gases, hydrogen and oxygen, can combine to form a liquid, water, in an exothermic reaction, as described by the following equation: 2 H 2 + O 2 → 2 H 2 O. Reaction stoichiometry describes the 2:1:2 ratio of hydrogen, oxygen, and water molecules in the above equation.
"Nitrous gas" is 44.05% nitrogen and 55.95% oxygen, which means there are 160 g of oxygen for every 140 g of nitrogen. "Nitric acid" is 29.5% nitrogen and 70.5% oxygen, which means it has 320 g of oxygen for every 140 g of nitrogen. 80 g, 160 g, and 320 g form a ratio of 1:2:4. The formulas for these compounds are N 2 O, NO, and NO 2. [9] [10]
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allows machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimization, plotting functions and various types of data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in ...
The generalisation of the law of mass action, in terms of affinity, to equilibria of arbitrary stoichiometry was a bold and correct conjecture. The hypothesis that reaction rate is proportional to reactant concentrations is, strictly speaking, only true for elementary reactions (reactions with a single mechanistic step), but the empirical rate ...
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
The stoichiometry of a chemical reaction is based on chemical formulas and equations that provide the quantitative relation between the number of moles of various products and reactants, including yields. [8] Stoichiometric equations are used to determine the limiting reagent or reactant—the reactant that is completely consumed in a reaction ...
For his 1934 paper, Alfred Redfield analyzed nitrate and phosphate data for the Atlantic, Indian, Pacific oceans and Barents Sea. [1] As a Harvard physiologist, Redfield participated in several voyages on board the research vessel Atlantis, analyzing data for C, N, and P content in marine plankton, and referenced data collected by other researchers as early as 1898.