Search results
Results from the WOW.Com Content Network
The solution is to make the slope greater by some amount. Heun's Method considers the tangent lines to the solution curve at both ends of the interval, one which overestimates, and one which underestimates the ideal vertical coordinates. A prediction line must be constructed based on the right end point tangent's slope alone, approximated using ...
Note that flux limiters are also referred to as slope limiters because they both have the same mathematical form, and both have the effect of limiting the solution gradient near shocks or discontinuities.
Pell's equation for n = 2 and six of its integer solutions. Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y.
Fig. 1: Isoclines (blue), slope field (black), and some solution curves (red) of y' = xy. The solution curves are y = C e x 2 / 2 {\displaystyle y=Ce^{x^{2}/2}} . Given a family of curves , assumed to be differentiable , an isocline for that family is formed by the set of points at which some member of the family attains a given slope .
y=f(x)=.5x+1 or f(x,y)=x-2y+2=0 Positive and negative half-planes. The slope-intercept form of a line is written as = = + where is the slope and is the y-intercept. Because this is a function of only , it can't represent a vertical line.
The method is an extension of the Newmark's direct integration method originally proposed by Nathan M. Newmark in 1943. It was applied to the sliding block problem in a lecture delivered by him in 1965 in the British Geotechnical Association's 5th Rankine Lecture in London and published later in the Association's scientific journal Geotechnique. [1]
In some cases there may be two different problems with the same solution, yet one is not stiff and the other is. The phenomenon cannot therefore be a property of the exact solution, since this is the same for both problems, and must be a property of the differential system itself. Such systems are thus known as stiff systems.
The actual approach appears to have been developed by Clebsch in 1862. [2] Macaulay's method has been generalized for Euler-Bernoulli beams with axial compression, [ 3 ] to Timoshenko beams , [ 4 ] to elastic foundations , [ 5 ] and to problems in which the bending and shear stiffness changes discontinuously in a beam.