enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RNA origami - Wikipedia

    en.wikipedia.org/wiki/RNA_Origami

    RNA origami mechanism. RNA origami is the nanoscale folding of RNA, enabling the RNA to create particular shapes to organize these molecules. [1] It is a new method that was developed by researchers from Aarhus University and California Institute of Technology. [2] RNA origami is synthesized by enzymes that fold RNA into particular shapes.

  3. Protein folding - Wikipedia

    en.wikipedia.org/wiki/Protein_folding

    Protein before and after folding Results of protein folding. Protein folding is the physical process by which a protein, after synthesis by a ribosome as a linear chain of amino acids, changes from an unstable random coil into a more ordered three-dimensional structure.

  4. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyribonucleic acid (DNA) are nucleic acids.

  5. Biomolecular structure - Wikipedia

    en.wikipedia.org/wiki/Biomolecular_structure

    Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.

  6. Stem-loop - Wikipedia

    en.wikipedia.org/wiki/Stem-loop

    In RNA, adenine-uracil pairings featuring two hydrogen bonds are equal to the adenine-thymine bond of DNA. Base stacking interactions, which align the pi bonds of the bases' aromatic rings in a favorable orientation, also promote helix formation. The stability of the loop also influences the formation of the stem-loop structure.

  7. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Stem-loop or hairpin loop is the most common element of RNA secondary structure. [8] Stem-loop is formed when the RNA chains fold back on themselves to form a double helical tract called the 'stem', the unpaired nucleotides forms single stranded region called the 'loop'. A tetraloop is a four-base pairs hairpin

  8. RNA-based evolution - Wikipedia

    en.wikipedia.org/wiki/RNA-based_evolution

    Single-stranded RNA molecules can single handedly fold into complex structures. The molecules fold into secondary and tertiary structures by intramolecular base pairing. [7] There is a fine dynamic of disorder and order that facilitate an efficient structure formation. RNA strands form complementary base pairs.

  9. Nucleic acid quaternary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_quaternary...

    RNA is subdivided into many categories, including messenger RNA (), ribosomal RNA (), transfer RNA (), long non-coding RNA (), and several other small functional RNAs.. Whereas many proteins have quaternary structure, the majority of RNA molecules have only primary through tertiary structure and function as individual molecules rather than as multi-subunit structures