Search results
Results from the WOW.Com Content Network
Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.
The derivatives that appear in Maxwell's equations are vectors and electromagnetic fields are represented by the Faraday bivector F. This formulation is as general as that of differential forms for manifolds with a metric tensor, as then these are naturally identified with r -forms and there are corresponding operations.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
[24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...
In part III of the paper, which is entitled "General Equations of the Electromagnetic Field", Maxwell formulated twenty equations [1] which were to become known as Maxwell's equations, until this term became applied instead to a vectorized set of four equations selected in 1884, which had all appeared in his 1861 paper "On Physical Lines of Force".
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field.. Here subscripts e and m are used to differ between electric and magnetic charges.
The Riemann–Silberstein vector is used as a point of reference in the geometric algebra formulation of electromagnetism.Maxwell's four equations in vector calculus reduce to one equation in the algebra of physical space:
In electromagnetism, a branch of fundamental physics, the matrix representations of the Maxwell's equations are a formulation of Maxwell's equations using matrices, complex numbers, and vector calculus. These representations are for a homogeneous medium, an approximation in an inhomogeneous medium.