Search results
Results from the WOW.Com Content Network
An endothermic process may be a chemical process, such as dissolving ammonium nitrate (NH 4 NO 3) in water (H 2 O), or a physical process, such as the melting of ice cubes. [5] The opposite of an endothermic process is an exothermic process, one that releases or "gives out" energy, usually in the form of heat and sometimes as electrical energy. [1]
An endotherm (from Greek ἔνδον endon "within" and θέρμη thermē "heat") is an organism that maintains its body at a metabolically favorable temperature, largely by the use of heat released by its internal bodily functions instead of relying almost purely on ambient heat.
A classical example is the decomposition of mercuric oxide to give oxygen and mercury metal. The reaction was used by Joseph Priestley to prepare samples of gaseous oxygen for the first time. When water is heated to well over 2,000 °C (2,270 K; 3,630 °F), a small percentage of it will decompose into OH, monatomic oxygen, monatomic hydrogen, O ...
The pressure referred to is the partial pressure of the substance, not the total (e.g. atmospheric) pressure of the entire system. Thus, any solid can sublime if its vapour pressure is higher than the surrounding partial pressure of the same substance, and in some cases, sublimation occurs at an appreciable rate (e.g. water ice just below 0 °C).
Photosynthesis, the process that allows plants to convert carbon dioxide and water to sugar and oxygen, is an endothermic process: plants absorb radiant energy from the sun and use it in an endothermic, otherwise non-spontaneous process. The chemical energy stored can be freed by the inverse (spontaneous) process: combustion of sugar, which ...
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...
This is because second order is re-combinative desorption and with a larger initial coverage there is a higher probability the two particles will find each other and recombine into the desorption product. An example of second order desorption, n = 2, is when two hydrogen atoms on the surface desorb and form a gaseous H 2 molecule. There is also ...
An example mixture is hydrogen gas (H 2), nitrogen gas (N 2), and carbon monoxide (CO). The hydrogen and carbon monoxide are reducing agents, so they work together to shield surfaces from oxidation. Endothermic gas is often used as a carrier gas for gas carburizing and carbonitriding.