Search results
Results from the WOW.Com Content Network
The mole is widely used in chemistry as a convenient way to express amounts of reactants and amounts of products of chemical reactions. For example, the chemical equation 2 H 2 + O 2 → 2 H 2 O can be interpreted to mean that for each 2 mol molecular hydrogen (H 2) and 1 mol molecular oxygen (O 2) that react, 2 mol of water (H 2 O) form.
For example, a molecule of water has a mass of about 18.015 daltons on average, whereas a mole of water (which contains 6.022 140 76 × 10 23 water molecules) has a total mass of about 18.015 grams. In chemistry, because of the law of multiple proportions, it is often much more convenient to work with amounts of substances (that is, number of ...
Stoichiometry is not only used to balance chemical equations but also used in conversions, i.e., converting from grams to moles using molar mass as the conversion factor, or from grams to milliliters using density. For example, to find the amount of NaCl (sodium chloride) in 2.00 g, one would do the following:
The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mol (g/mol). That makes the molar mass an average of many particles or molecules (potentially containing different isotopes), and the molecular mass the mass of one specific particle or molecule. The molar mass is ...
In chemistry, a mole map is a graphical representation of an algorithm that compares molar mass, number of particles per mole, and factors from balanced equations or other formulae. [1] They are often used in undergraduate -level chemistry courses as a tool to teach the basics of stoichiometry and unit conversion .
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2]
It is one way of expressing the composition of a mixture in a dimensionless size; mole fraction (percentage by moles, mol%) and volume fraction (percentage by volume, vol%) are others. When the prevalences of interest are those of individual chemical elements , rather than of compounds or other substances, the term mass fraction can also refer ...