Search results
Results from the WOW.Com Content Network
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
The Java virtual machine's set of primitive data types consists of: [12] byte, short, int, long, char (integer types with a variety of ranges) float and double, floating-point numbers with single and double precisions; boolean, a Boolean type with logical values true and false; returnAddress, a value referring to an executable memory address ...
Another meaning of range in computer science is an alternative to iterator. When used in this sense, range is defined as "a pair of begin/end iterators packed together". [1] It is argued [1] that "Ranges are a superior abstraction" (compared to iterators) for several reasons, including better safety.
strictfp, an obsolete keyword in the Java programming language that previously restricted arithmetic to IEEE 754 single and double precision to ensure reproducibility across common hardware platforms (as of Java 17, this behavior is required) Table-maker's dilemma for more about the correct rounding of functions; Standard Apple Numerics Environment
Because E is an integer in the range 0 to 1023, up to 10 bits to the left of the radix point are needed to represent the integer part of the logarithm. Because M falls in the range 1 ≤ M < 2 , the value of log 2 M will fall in the range 0 ≤ log 2 M < 1 so at least 52 bits are needed to the right of the radix point to represent the ...
PER Aligned: a fixed number of bits if the integer type has a finite range and the size of the range is less than 65536; a variable number of octets otherwise; OER: 1, 2, or 4 octets (either signed or unsigned) if the integer type has a finite range that fits in that number of octets; a variable number of octets otherwise
negate a double drem 73 0111 0011 value1, value2 → result get the remainder from a division between two doubles dreturn af 1010 1111 value → [empty] return a double from a method dstore 39 0011 1001 1: index value → store a double value into a local variable #index: dstore_0 47 0100 0111 value → store a double into local variable 0 dstore_1
In single precision, the bias is 127, so in this example the biased exponent is 124; in double precision, the bias is 1023, so the biased exponent in this example is 1020. fraction = .01000… 2 . IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared conveniently by the same hardware that compares signed 2's ...