Search results
Results from the WOW.Com Content Network
Perceptual control theory (PCT) is a model of behavior based on the properties of negative feedback control loops. A control loop maintains a sensed variable at or near a reference value by means of the effects of its outputs upon that variable, as mediated by physical properties of the environment.
Riemann zeta function, the archetypal example; Ruelle zeta function; Selberg zeta function of a Riemann surface; Shimizu L-function; Shintani zeta function; Subgroup zeta function; Witten zeta function of a Lie group; Zeta function of an incidence algebra, a function that maps every interval of a poset to the constant value 1. Despite not ...
In control theory, overshoot refers to an output exceeding its final, steady-state value. [2] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step
Every control system must guarantee first the stability of the closed-loop behavior. For linear systems, this can be obtained by directly placing the poles. Nonlinear control systems use specific theories (normally based on Aleksandr Lyapunov's Theory) to ensure stability without regard to the inner dynamics of the system. The possibility to ...
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
Classical control theory is a branch of control theory that deals with the behavior of dynamical systems with inputs, and how their behavior is modified by feedback, using the Laplace transform as a basic tool to model such systems.
If the system is controllable, there is always an input u(t) such that any state x 0 can be transferred to any other state x(t). With that in mind, a feedback loop can be added to the system with the control input u(t) = r(t) − kx(t), such that the new dynamics of the system will be