Search results
Results from the WOW.Com Content Network
The hydride reacts with the weak Bronsted acid releasing H 2. Hydrides such as calcium hydride are used as desiccants, i.e. drying agents, to remove trace water from organic solvents. The hydride reacts with water forming hydrogen and hydroxide salt. The dry solvent can then be distilled or vacuum transferred from the "solvent pot".
The hydrogen is more thermolabile, and can be lost by heating yielding a reduced valence metal compound. [3] Changing the ratio of hydrogen and oxygen can modify electrical or magnetic properties. Then band gap can be altered. [3] The hydride atom can be mobile in a compound undergoing electron coupled hydride transfer. [4]
Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.
Binary hydrogen compounds in group 1 are the ionic hydrides (also called saline hydrides) wherein hydrogen is bound electrostatically. Because hydrogen is located somewhat centrally in an electronegative sense, it is necessary for the counterion to be exceptionally electropositive for the hydride to possibly be accurately described as truly behaving ionic.
Water molecules have two hydrogen atoms and one oxygen atom. While H 2 is not very reactive under standard conditions, it does form compounds with most elements. Hydrogen can form compounds with elements that are more electronegative, such as halogens (F, Cl, Br, I), or oxygen; in these compounds hydrogen takes on a partial positive charge. [1]
LiH is produced by treating lithium metal with hydrogen gas: 2 Li + H 2 → 2 LiH. This reaction is especially rapid at temperatures above 600 °C. Addition of 0.001–0.003% carbon, and/or increasing temperature/pressure, increases the yield up to 98% at 2-hour residence time. [3]: 147 However, the reaction proceeds at temperatures as low as ...
An ill-defined copper hydride had been described in the 1844 as resulting from treatment of copper salts with hypophosphorous acid. It was subsequently found that hydrogen gas was absorbed by mixtures of transition metal salts and Grignard reagents. [20]
The hydrogen atoms occupy interstitial sites in palladium hydride. The H–H bond in H 2 is cleaved. The ratio in which H is absorbed on Pd is defined by = [] [].When Pd is brought into a H 2 environment with a pressure of 1 atm, the resulting concentration of H reaches x ≈ 0.7.