Search results
Results from the WOW.Com Content Network
The algorithm can be formulated as comparing the top two tokens of the stack (after adding the next token to the stack) or the top token on the stack and the next token in the sentence. Training data for such an algorithm is created by using an oracle, which constructs a sequence of transitions from gold trees which are then fed to a classifier ...
The methods of neuro-linguistic programming are the specific techniques used to perform and teach neuro-linguistic programming, [1] [2] which teaches that people are only able to directly perceive a small part of the world using their conscious awareness, and that this view of the world is filtered by experience, beliefs, values, assumptions, and biological sensory systems.
This bias primarily stems from token bias—that is, the model assigns a higher a priori probability to specific answer tokens (such as “A”) when generating responses. As a result, when the ordering of options is altered (for example, by systematically moving the correct answer to different positions), the model’s performance can ...
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...
A lexical token is a string with an assigned and thus identified meaning, in contrast to the probabilistic token used in large language models. A lexical token consists of a token name and an optional token value. The token name is a category of a rule-based lexical unit. [2]
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
As of 2020, BERT is a ubiquitous baseline in natural language processing (NLP) experiments. [3] BERT is trained by masked token prediction and next sentence prediction. As a result of this training process, BERT learns contextual, latent representations of tokens in their context, similar to ELMo and GPT-2. [4]
n-gram – sequence of n number of tokens, where a "token" is a character, syllable, or word. The n is replaced by a number. Therefore, a 5-gram is an n-gram of 5 letters, syllables, or words. "Eat this" is a 2-gram (also known as a bigram). Bigram – n-gram of 2 tokens. Every sequence of 2 adjacent elements in a string of tokens is a bigram.