enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison function - Wikipedia

    en.wikipedia.org/wiki/Comparison_function

    Comparison functions are primarily used to obtain quantitative restatements of stability properties as Lyapunov stability, uniform asymptotic stability, etc. These restatements are often more useful than the qualitative definitions of stability properties given in ε - δ {\displaystyle \varepsilon {\text{-}}\delta } language.

  3. LaSalle's invariance principle - Wikipedia

    en.wikipedia.org/wiki/LaSalle's_invariance_principle

    If ˙ is negative definite, then the global asymptotic stability of the origin is a consequence of Lyapunov's second theorem. The invariance principle gives a criterion for asymptotic stability in the case when V ˙ ( x ) {\displaystyle {\dot {V}}(\mathbf {x} )} is only negative semidefinite.

  4. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    An additional condition called "properness" or "radial unboundedness" is required in order to conclude global stability. Global asymptotic stability (GAS) follows similarly. It is easier to visualize this method of analysis by thinking of a physical system (e.g. vibrating spring and mass) and considering the energy of such a system. If the ...

  5. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  6. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    For asymptotic stability, the state is also required to converge to =. A control-Lyapunov function is used to test whether a system is asymptotically stabilizable , that is whether for any state x there exists a control u ( x , t ) {\displaystyle u(x,t)} such that the system can be brought to the zero state asymptotically by applying the ...

  7. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    Asymptotic analysis is a key tool for exploring the ordinary and partial differential equations which arise in the mathematical modelling of real-world phenomena. [3] An illustrative example is the derivation of the boundary layer equations from the full Navier-Stokes equations governing fluid flow.

  8. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...

  9. Method of averaging - Wikipedia

    en.wikipedia.org/wiki/Method_of_averaging

    Under the validity of this averaging technique, the asymptotic behavior of the original system is captured by the dynamical equation for . In this way, qualitative methods for autonomous dynamical systems may be employed to analyze the equilibria and more complex structures, such as slow manifold and invariant manifolds , as well as their ...