Search results
Results from the WOW.Com Content Network
To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
b c is the colligative molality, calculated by taking dissociation into account since the boiling point elevation is a colligative property, dependent on the number of particles in solution. This is most easily done by using the van 't Hoff factor i as b c = b solute · i, where b solute is the molality of the solution. [3]
The molar concentration is defined as the amount of a constituent (in moles) divided by the volume of the mixture : =. The SI unit is mol/m 3. However, more commonly the unit mol/L (= mol/dm 3) is used.
The osmolarity of a solution is usually expressed as Osm/L (pronounced "osmolar"), in the same way that the molarity of a solution is expressed as "M" (pronounced "molar"). Whereas molarity measures the number of moles of solute per unit volume of solution, osmolarity measures the number of particles on dissociation of osmotically active ...
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
where ν is the number of ions produced from the dissociation of one molecule of the dissolved salt, b is the molality of the salt dissolved in water, φ is the osmotic coefficient of water, and the constant 55.51 represents the molality of water. In the above equation, the activity of a solvent (here water) is represented as inversely ...
In thermodynamics, the ebullioscopic constant K b relates molality b to boiling point elevation. [1] It is the ratio of the latter to the former: = i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution.