Search results
Results from the WOW.Com Content Network
In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form y = a x k {\displaystyle y=ax^{k}} – appear as straight lines in a log–log graph, with the exponent corresponding to ...
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]
If X is defined to be the random variable which is the minimum of N independent realisations from an exponential distribution with rate parameter β, and if N is a realisation from a logarithmic distribution (where the parameter p in the usual parameterisation is replaced by (1 − p)), then X has the exponential-logarithmic distribution in the ...
When a real number like .007 is denoted alternatively by 7.0 × 10 —3 then it is said that the number is represented in scientific notation.More generally, to write a number in the form a × 10 b, where 1 <= a < 10 and b is an integer, is to express it in scientific notation, and a is called the significand or the mantissa, and b is its exponent. [3]
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
The log-metalog distribution, which is highly shape-flexile, has simple closed forms, can be parameterized with data using linear least squares, and subsumes the log-logistic distribution as a special case. The log-normal distribution, describing variables which can be modelled as the product of many small independent positive variables.
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
Exponential growth or exponential decay—where the varaible change is proportional to the variable value—are thus modeled with exponential functions. Examples are unlimited population growth leading to Malthusian catastrophe , continuously compounded interest , and radioactive decay .