Search results
Results from the WOW.Com Content Network
The following algorithm generates the next permutation lexicographically after a given permutation. It changes the given permutation in-place. Find the largest index k such that a[k] < a[k + 1]. If no such index exists, the permutation is the last permutation. Find the largest index l greater than k such that a[k] < a[l].
In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.
Because this method generates permutations that alternate between being even and odd, it may easily be modified to generate only the even permutations or only the odd permutations: to generate the next permutation of the same parity from a given permutation, simply apply the same procedure twice. [6]
The algorithm takes a list of all the elements of the sequence, and continually determines the next element in the shuffled sequence by randomly drawing an element from the list until no elements remain. [1] The algorithm produces an unbiased permutation: every permutation is equally likely.
Considering the symmetric group S n of all permutations of the set {1, ..., n}, we can conclude that the map sgn: S n → {−1, 1} that assigns to every permutation its signature is a group homomorphism. [2] Furthermore, we see that the even permutations form a subgroup of S n. [1] This is the alternating group on n letters, denoted by A n. [3]
The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth ...
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
The identity is its minimum, and the permutation formed by reversing the identity is its maximum. If a permutation were assigned to each inversion set using the element-based definition, the resulting order of permutations would be that of a Cayley graph, where an edge corresponds to the swapping of two elements on consecutive places. This ...