enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Congruum - Wikipedia

    en.wikipedia.org/wiki/Congruum

    Additionally, multiplying a congruum by a square number produces another congruum, whose progression of squares is multiplied by the same factor. All solutions arise in one of these two ways. [ 1 ] For instance, the congruum 96 can be constructed by these formulas with m = 3 {\displaystyle m=3} and n = 1 {\displaystyle n=1} , while the congruum ...

  3. Square pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Square_pyramidal_number

    Formulas for summing consecutive squares to give a cubic polynomial, whose values are the square pyramidal numbers, are given by Archimedes, who used this sum as a lemma as part of a study of the volume of a cone, [2] and by Fibonacci, as part of a more general solution to the problem of finding formulas for sums of progressions of squares. [3]

  4. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...

  5. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    In number theory, the sum of two squares theorem relates the prime decomposition of any integer n > 1 to whether it can be written as a sum of two squares, such that n = a 2 + b 2 for some integers a, b.

  6. Squared triangular number - Wikipedia

    en.wikipedia.org/wiki/Squared_triangular_number

    A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From Gulley (2010).The n th coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the n th region is n times n × n.

  7. Sylvester's sequence - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_sequence

    The sequence can be used to prove that there are infinitely many prime numbers, as any prime can divide at most one number in the sequence. More strongly, no prime factor of a number in the sequence can be congruent to 5 modulo 6, and the sequence can be used to prove that there are infinitely many primes congruent to 7 modulo 12. [20]

  8. Centered square number - Wikipedia

    en.wikipedia.org/wiki/Centered_square_number

    Each centered square number is the sum of successive squares. Example: as shown in the following figure of Floyd's triangle, 25 is a centered square number, and is the sum of the square 16 (yellow rhombus formed by shearing a square) and of the next smaller square, 9 (sum of two blue triangles):

  9. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    which is analogous to the integration by parts formula for semimartingales. Although applications almost always deal with convergence of sequences, the statement is purely algebraic and will work in any field. It will also work when one sequence is in a vector space, and the other is in the relevant field of scalars.

  1. Related searches sequence of squares in squares formula pdf free

    sequence of squares in squares formula pdf free download examplesum of squares formula