enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    Irreducibility (mathematics) In mathematics, the concept of irreducibility is used in several ways. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field. In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  3. Eisenstein's criterion - Wikipedia

    en.wikipedia.org/wiki/Eisenstein's_criterion

    The fact that the polynomial after substitution is irreducible then allows concluding that the original polynomial is as well. This procedure is known as applying a shift . For example consider H = x 2 + x + 2 , in which the coefficient 1 of x is not divisible by any prime, Eisenstein's criterion does not apply to H .

  4. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    The "underlying graph" of a nonnegative n-square matrix is the graph with vertices numbered 1, ..., n and arc ij if and only if A ij ≠ 0. If the underlying graph of such a matrix is strongly connected, then the matrix is irreducible, and thus the theorem applies. In particular, the adjacency matrix of a strongly connected graph is irreducible ...

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The graph of a degree 1 polynomial (or linear function) f(x) = a0 + a1x, where a1 ≠ 0, is an oblique line with y-intercept a0 and slope a1. The graph of a degree 2 polynomial. f(x) = a0 + a1x + a2x2, where a2 ≠ 0. is a parabola. The graph of a degree 3 polynomial. f(x) = a0 + a1x + a2x2 + a3x3, where a3 ≠ 0.

  6. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    In mathematics, the nth cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial with integer coefficients that is a divisor of and is not a divisor of for any k < n. Its roots are all n th primitive roots of unity e 2 i π k n {\displaystyle e^{2i\pi {\frac {k}{n}}}} , where k runs over the positive integers less ...

  7. Tschirnhaus transformation - Wikipedia

    en.wikipedia.org/wiki/Tschirnhaus_transformation

    Definition. For a generic degree reducible monic polynomial equation of the form , where and are polynomials and does not vanish at , the Tschirnhaus transformation is the function: Such that the new equation in , , has certain special properties, most commonly such that some coefficients, , are identically zero. [2][3]

  8. Semisimple representation - Wikipedia

    en.wikipedia.org/wiki/Semisimple_representation

    Let V be a representation of a group G; or more generally, let V be a vector space with a set of linear endomorphisms acting on it. In general, a vector space acted on by a set of linear endomorphisms is said to be simple (or irreducible) if the only invariant subspaces for those operators are zero and the vector space itself; a semisimple representation then is a direct sum of simple ...

  9. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis can be generalized to higher degree polynomials as follows. Let p ∈ F[x] be an irreducible polynomial which splits in a formally real extension R of F (i.e., p has only real roots). Assume that p has a root in which is an extension of F by radicals.