Search results
Results from the WOW.Com Content Network
The number of perfect matchings in a complete graph K n (with n even) is given by the double factorial (n − 1)!!. [13] The numbers of matchings in complete graphs, without constraining the matchings to be perfect, are given by the telephone numbers. [14] The number of perfect matchings in a graph is also known as the hafnian of its adjacency ...
However, counting the number of perfect matchings, even in bipartite graphs, is #P-complete. This is because computing the permanent of an arbitrary 0–1 matrix (another #P-complete problem) is the same as computing the number of perfect matchings in the bipartite graph having the given matrix as its biadjacency matrix.
The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts and . For example, the complete bipartite graph K 3,5 has degree sequence (,,), (,,,,). Isomorphic bipartite graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a bipartite graph; in ...
In a uniformly-random instance of the stable marriage problem with n men and n women, the average number of stable matchings is asymptotically . [6] In a stable marriage instance chosen to maximize the number of different stable matchings, this number is an exponential function of n . [ 7 ]
Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...
a finite graph is planar if and only if it contains no subgraph homeomorphic to K 5 (complete graph on five vertices) or K 3,3 (complete bipartite graph on two partitions of size three). Vijay Vazirani generalized the FKT algorithm to graphs that do not contain a subgraph homeomorphic to K 3,3 . [ 11 ]
One application of the Edmonds matrix of a bipartite graph is that the graph admits a perfect matching if and only if the polynomial det(A ij) in the x ij is not identically zero. Furthermore, the number of perfect matchings is equal to the number of monomials in the polynomial det(A), and is also equal to the permanent of .
Kőnig had announced in 1914 and published in 1916 the results that every regular bipartite graph has a perfect matching, [11] and more generally that the chromatic index of any bipartite graph (that is, the minimum number of matchings into which it can be partitioned) equals its maximum degree [12] – the latter statement is known as Kőnig's ...