Search results
Results from the WOW.Com Content Network
In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares.
Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5". Integer exponents
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
In mathematics, high superscripts are used for exponentiation to indicate that one number or variable is raised to the power of another number or variable. Thus y 4 is y raised to the fourth power, 2 x is 2 raised to the power of x, and the equation E = mc 2 includes a term for the speed of light squared.
For example, the fourth power of 10 is 10,000 because 10 4 = 10 × 10 × 10 × 10 = 10,000. The term power strictly refers to the entire expression, but is sometimes used to refer to the exponent. Radix is the traditional term for base , but usually refers then to one of the common bases: decimal (10), binary (2), hexadecimal (16), or ...
The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.
Get breaking news and the latest headlines on business, entertainment, politics, world news, tech, sports, videos and much more from AOL
In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers.