Search results
Results from the WOW.Com Content Network
A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...
The key quantities are then the pressure drop along the pipe per unit length, Δp / L , and the volumetric flow rate. The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid).
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
In those cases, the characteristic length is the diameter of the pipe or, in case of non-circular tubes, its hydraulic diameter : = Where is the cross-sectional area of the pipe and is its wetted perimeter. It is defined such that it reduces to a circular diameter of D for circular pipes.
Cross sectional area of a trapezoidal open channel, red highlights wetted perimeter Change of wetted perimeter (blue) of trapezoidal canal as a function of angle ψ.. The wetted perimeter is the perimeter of the cross sectional area that is "wet". [1]
R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe. Low viscosity or a wide pipe may result in turbulent flow, making it necessary to use more complex models, such as the Darcy–Weisbach equation.
The hydraulic diameter is similarly defined as 4 times the cross-sectional area of a pipe A, divided by its "wetted" perimeter P. For a circular pipe of radius R, at full flow, this is = = as one would expect. This is equivalent to the above definition of the 2D mean diameter.
The Hazen–Williams equation is an empirical relationship which relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.