enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    Wolfgang Pauli (1900–1958), c. 1924. Pauli received the Nobel Prize in physics in 1945, nominated by Albert Einstein, for the Pauli exclusion principle.. In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary.

  3. Eigenspinor - Wikipedia

    en.wikipedia.org/wiki/Eigenspinor

    For a single spin 1/2 particle, they can be defined as the eigenvectors of the Pauli matrices. General eigenspinors. In quantum mechanics, ...

  4. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    The traditional Pauli matrices are the matrix representation of the () Lie algebra generators , , and in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2) .

  5. Spin-1/2 - Wikipedia

    en.wikipedia.org/wiki/Spin-1/2

    When spinors are used to describe the quantum states, the three spin operators (S x, S y, S z,) can be described by 2 × 2 matrices called the Pauli matrices whose eigenvalues are ± ⁠ ħ / 2 ⁠. For example, the spin projection operator S z affects a measurement of the spin in the z direction.

  6. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    In 1927, Pauli formalized the theory of spin using the theory of quantum mechanics invented by Erwin Schrödinger and Werner Heisenberg. He pioneered the use of Pauli matrices as a representation of the spin operators and introduced a two-component spinor wave-function. Pauli's theory of spin was non-relativistic.

  7. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    There were some precursors to Cartan's work with 2×2 complex matrices: Wolfgang Pauli had used these matrices so intensively that elements of a certain basis of a four-dimensional subspace are called Pauli matrices σ i, so that the Hermitian matrix is written as a Pauli vector. [2] In the mid 19th century the algebraic operations of this algebra of four complex dimensions were studied as ...

  8. Two-state quantum system - Wikipedia

    en.wikipedia.org/wiki/Two-state_quantum_system

    The matrix is the 2×2 identity matrix and the matrices with =,, are the Pauli matrices. This decomposition simplifies the analysis of the system, especially in the time-independent case, where the values of α , β , γ {\displaystyle \alpha ,\beta ,\gamma } and δ {\displaystyle \delta } are constants.

  9. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.