enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple. [ 7 ] Also useful in the quantum mechanics of multiparticle systems, the general Pauli group G n is defined to consist of all n -fold tensor products of Pauli matrices.

  3. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...

  4. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    The traditional Pauli matrices are the matrix representation of the () Lie algebra generators , , and in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2) .

  5. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    He pioneered the use of Pauli matrices as a representation of the spin operators and introduced a two-component spinor wave-function. Pauli's theory of spin was non-relativistic. In 1928, Paul Dirac published his relativistic electron equation, using a four-component spinor (known as a "Dirac spinor") for the electron wave-function.

  6. Spin matrix - Wikipedia

    en.wikipedia.org/wiki/Spin_matrix

    Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli matrices; Gamma matrices, which can be represented in terms of the Pauli matrices.

  7. Lévy-Leblond equation - Wikipedia

    en.wikipedia.org/wiki/Lévy-Leblond_equation

    For a nonrelativistic spin-1/2 particle of mass m, a representation of the time-independent Lévy-Leblond equation reads: [1] {+ = + =where c is the speed of light, E is the nonrelativistic particle energy, = is the momentum operator, and = (,,) is the vector of Pauli matrices, which is proportional to the spin operator =.

  8. Eigenspinor - Wikipedia

    en.wikipedia.org/wiki/Eigenspinor

    In quantum mechanics, eigenspinors are thought of as basis vectors representing the general spin state of a particle. Strictly speaking, they are not vectors at all, but in fact spinors. For a single spin 1/2 particle, they can be defined as the eigenvectors of the Pauli matrices.

  9. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    The spin group Spin(1, 3) is isomorphic to SL(2, C); it is used to explain spin and spinors in terms of the Clifford algebra, thus making it clear how to generalize the Lorentz group to general settings in Riemannian geometry, including theories of supergravity and string theory.