Search results
Results from the WOW.Com Content Network
A balanced binary tree is a binary tree structure in which the left and right subtrees of every node differ in height (the number of edges from the top-most node to the farthest node in a subtree) by no more than 1 (or the skew is no greater than 1). [22]
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
The preliminary steps for deleting a node are described in section Binary search tree#Deletion. There, the effective deletion of the subject node or the replacement node decreases the height of the corresponding child tree either from 1 to 0 or from 2 to 1, if that node had a child.
A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.
AVL trees and red–black trees are two examples of binary search trees that use a right rotation. A single right rotation is done in O(1) time but is often integrated within the node insertion and deletion of binary search trees. The rotations are done to keep the cost of other methods and tree height at a minimum.
After a rotation, the side of the rotation increases its height by 1 whilst the side opposite the rotation decreases its height similarly. Therefore, one can strategically apply rotations to nodes whose left child and right child differ in height by more than 1. Self-balancing binary search trees apply this operation automatically.