Search results
Results from the WOW.Com Content Network
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).
Equatorial gravity: m/s 2 g: 274.0 27.94 ... four of Jupiter, and one each of Earth, ... reflected distance from the parent planet and were updated for each new ...
The portion of the mass that is located at radii r > r 0 exerts no net gravitational force at the radius r 0 from the center. That is, the individual gravitational forces exerted on a point at radius r 0 by the elements of the mass outside the radius r 0 cancel each other.
The table below shows comparative gravitational accelerations at the surface of the Sun, the Earth's moon, each of the planets in the Solar System and their major moons, Ceres, Pluto, and Eris. For gaseous bodies, the "surface" is taken to mean visible surface: the cloud tops of the giant planets (Jupiter, Saturn, Uranus, and Neptune), and the ...
Gravitation, also known as gravitational attraction, is the mutual attraction between all masses in the universe.Gravity is the gravitational attraction at the surface of a planet or other celestial body; [6] gravity may also include, in addition to gravitation, the centrifugal force resulting from the planet's rotation (see § Earth's gravity).
For gas giant planets such as Jupiter, Saturn, Uranus, and Neptune, the surface gravity is given at the 1 bar pressure level in the atmosphere. [12] It has been found that for giant planets with masses in the range up to 100 times Earth's mass, their gravity surface is nevertheless very similar and close to 1 g, a region named the gravity ...
These lists contain the Sun, the planets, dwarf planets, many of the larger small Solar System bodies (which includes the asteroids), all named natural satellites, and a number of smaller objects of historical or scientific interest, such as comets and near-Earth objects.
The orbits are ellipses, with foci F 1 and F 2 for Planet 1, and F 1 and F 3 for Planet 2. The Sun is at F 1. The shaded areas A 1 and A 2 are equal, and are swept out in equal times by Planet 1's orbit. The ratio of Planet 1's orbit time to Planet 2's is (/) /.