enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Penrose graphical notation - Wikipedia

    en.wikipedia.org/wiki/Penrose_graphical_notation

    Penrose graphical notation (tensor diagram notation) of a matrix product state of five particles. In mathematics and physics, Penrose graphical notation or tensor diagram notation is a (usually handwritten) visual depiction of multilinear functions or tensors proposed by Roger Penrose in 1971. [1]

  3. String diagram - Wikipedia

    en.wikipedia.org/wiki/String_diagram

    When interpreted in the monoidal category of vector spaces and linear maps with the tensor product, string diagrams are called tensor networks or Penrose graphical notation. This has led to the development of categorical quantum mechanics where the axioms of quantum theory are expressed in the language of monoidal categories.

  4. Spin network - Wikipedia

    en.wikipedia.org/wiki/Spin_network

    Spin network diagram, after Penrose In physics , a spin network is a type of diagram which can be used to represent states and interactions between particles and fields in quantum mechanics . From a mathematical perspective, the diagrams are a concise way to represent multilinear functions and functions between representations of matrix groups .

  5. Penrose diagram - Wikipedia

    en.wikipedia.org/wiki/Penrose_diagram

    Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.

  6. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  7. Tensor network - Wikipedia

    en.wikipedia.org/wiki/Tensor_network

    Tensor networks or tensor network states are a class of variational wave functions used in the study of many-body quantum systems [1] and fluids. [ 2 ] [ 3 ] Tensor networks extend one-dimensional matrix product states to higher dimensions while preserving some of their useful mathematical properties.

  8. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    [a] [1] [2] [3] It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), tensor calculus or tensor analysis developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. [4]

  9. ZX-calculus - Wikipedia

    en.wikipedia.org/wiki/ZX-calculus

    The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ZX-diagrams. A ZX-diagram consists of a set of generators called spiders that represent specific tensors. These are connected together to form a tensor network similar to Penrose graphical notation.