enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    He came to the conclusion that electric charge was a relation between two or more bodies, because he could not charge one body without having an opposite charge in another body. [45] In 1838, Faraday also put forth a theoretical explanation of electric force, while expressing neutrality about whether it originates from one, two, or no fluids. [46]

  3. Electrostatic induction - Wikipedia

    en.wikipedia.org/wiki/Electrostatic_induction

    But when the inducing charge is moved away, the charge is released and spreads throughout the electroscope terminal to the leaves, so the gold leaves move apart again. The sign of the charge left on the electroscope after grounding is always opposite in sign to the external inducing charge. [5] The two rules of induction are: [5] [6]

  4. Space charge - Wikipedia

    en.wikipedia.org/wiki/Space_charge

    As an application example, the steady-state space-charge-limited current across a piece of intrinsic silicon with a charge-carrier mobility of 1500 cm 2 /V-s, a relative dielectric constant of 11.9, an area of 10 −8 cm 2 and a thickness of 10 −4 cm can be calculated by an online calculator to be 126.4 μA at 3 V. Note that in order for this ...

  5. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    The Maxwell–Faraday equation (listed as one of Maxwell's equations) describes the fact that a spatially varying (and also possibly time-varying, depending on how a magnetic field varies in time) electric field always accompanies a time-varying magnetic field, while Faraday's law states that emf (electromagnetic work done on a unit charge when ...

  6. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    where = is the distance of each charge from the test charge, which situated at the point , and () is the electric potential that would be at if the test charge were not present. If only two charges are present, the potential energy is Q 1 Q 2 / ( 4 π ε 0 r ) {\displaystyle Q_{1}Q_{2}/(4\pi \varepsilon _{0}r)} .

  7. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    Heaviside's version (see Maxwell–Faraday equation below) is the form recognized today in the group of equations known as Maxwell's equations. In 1834 Heinrich Lenz formulated the law named after him to describe the "flux through the circuit". Lenz's law gives the direction of the induced emf and current resulting from electromagnetic induction.

  8. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    The ball was charged with a known charge of static electricity, and a second charged ball of the same polarity was brought near it. The two charged balls repelled one another, twisting the fiber through a certain angle, which could be read from a scale on the instrument. By knowing how much force it took to twist the fiber through a given angle ...

  9. Body capacitance - Wikipedia

    en.wikipedia.org/wiki/Body_capacitance

    Body capacitance can be used to operate touch switches (e.g. for elevators or faucets). They respond to close approach of a part of a human body, usually a fingertip. They don't require applying any force to their surfaces. Rather, the capacitance between electrodes at the device's surface and the fingertip is sensed.