Search results
Results from the WOW.Com Content Network
The higher the diffusivity (of one substance with respect to another), the faster they diffuse into each other. Typically, a compound's diffusion coefficient is ~10,000× as great in air as in water. Carbon dioxide in air has a diffusion coefficient of 16 mm 2 /s, and in water its diffusion coefficient is 0.0016 mm 2 /s. [1] [2]
The self-diffusion coefficient of water has been experimentally determined with high accuracy and thus serves often as a reference value for measurements on other liquids. The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2]
In the phenomenological approach, diffusion is the movement of a substance from a region of high concentration to a region of low concentration without bulk motion. According to Fick's laws, the diffusion flux is proportional to the negative gradient of concentrations. It goes from regions of higher concentration to regions of lower concentration.
In a multicomponent system, a set of approximate formulas exist to predict the Maxwell–Stefan-diffusion coefficient. [6] The Maxwell–Stefan theory is more comprehensive than the "classical" Fick's diffusion theory, as the former does not exclude the possibility of negative diffusion coefficients.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
The diffusion coefficient can be combined with the reaction equilibrium constant to get the final form of the equation, where is the permeability of the membrane. The relationship being P = K D {\displaystyle P=KD}
In engineering, the mass transfer coefficient is a diffusion rate constant that relates the mass transfer rate, mass transfer area, and concentration change as driving force: [1] = ˙ Where: is the mass transfer coefficient [mol/(s·m 2)/(mol/m 3)], or m/s
It is assumed that the markers move relative to the diffusion of one component and into one of the two initial rods, as was chosen in Kirkendall's experiment. In the following equation, which represents Fick's first law for one of the two components, D 1 is the diffusion coefficient of component one, and C 1 is the concentration of component one: