Search results
Results from the WOW.Com Content Network
The regular tetrahedron is the simplest convex deltahedron, a polyhedron in which all of its faces are equilateral triangles; there are seven other convex deltahedra. [3] The regular tetrahedron is also one of the five regular Platonic solids, a set of polyhedrons in which all of their faces are regular polygons. [4]
[21] [22] A tetrahedron or triangular pyramid is an example that has four equilateral triangles, with all edges equal in length, and one of them is considered as the base. Because the faces are regular, it is an example of a Platonic solid and deltahedra, and it has tetrahedral symmetry. [23] [24] A pyramid with the base as circle is known as ...
A pyramid with side length 5 contains 35 spheres. Each layer represents one of the first five triangular numbers. A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron.
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
Regular polyhedra are the most highly symmetrical. Altogether there are nine regular polyhedra: five convex and four star polyhedra. The five convex examples have been known since antiquity and are called the Platonic solids. These are the triangular pyramid or tetrahedron, cube, octahedron, dodecahedron and icosahedron:
The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2] The numbers of points in the base and in layers parallel to the base are given by polygonal numbers of the given number of sides, while the numbers of points in each triangular side is ...
regular tetrahedron, a pyramid with four equilateral triangles, one of which can be considered the base. triangular bipyramid, regular octahedron, and pentagonal bipyramid; bipyramids with six, eight, and ten equilateral triangles, respectively. They are constructed by identical pyramids base-to-base.
A triangle in which one of the angles is a right angle is a right triangle, a triangle in which all of its angles are less than that angle is an acute triangle, and a triangle in which one of it angles is greater than that angle is an obtuse triangle. [8] These definitions date back at least to Euclid. [9]