Search results
Results from the WOW.Com Content Network
The row-column method can be applied when one of the signals in the convolution is separable. The method exploits the properties of separability in order to achieve a method of calculating the convolution of two multidimensional signals that is more computationally efficient than direct computation of each sample (given that one of the signals ...
[2] In LIC, discrete numerical line integration is performed along the field lines (curves) of the vector field on a uniform grid. The integral operation is a convolution of a filter kernel and an input texture, often white noise. [1] In signal processing, this process is known as a discrete convolution. [3]
The convolution of two finite sequences is defined by extending the sequences to finitely supported functions on the set of integers. When the sequences are the coefficients of two polynomials, then the coefficients of the ordinary product of the two polynomials are the convolution of the original two
Fig 2: A graph of the values of N (an integer power of 2) that minimize the cost function ( +) + When the DFT and IDFT are implemented by the FFT algorithm, the pseudocode above requires about N (log 2 (N) + 1) complex multiplications for the FFT, product of arrays, and IFFT.
In graph theory, a graph or digraph whose adjacency matrix is circulant is called a circulant graph/digraph. Equivalently, a graph is circulant if its automorphism group contains a full-length cycle. The Möbius ladders are examples of circulant graphs, as are the Paley graphs for fields of prime order.
These functions are shown in the plot at the right. For example, with a 9-point linear function (moving average) two thirds of the noise is removed and with a 9-point quadratic/cubic smoothing function only about half the noise is removed. Most of the noise remaining is low-frequency noise(see Frequency characteristics of convolution filters ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Any linear map between qubits can be represented as a ZX-diagram, i.e. ZX-diagrams are universal. A given ZX-diagram can be transformed into another ZX-diagram using the rewrite rules of the ZX-calculus if and only if the two diagrams represent the same linear map, i.e. the ZX-calculus is sound and complete.