Search results
Results from the WOW.Com Content Network
Business analytics makes extensive use of analytical modeling and numerical analysis, including explanatory and predictive modeling, [2] and fact-based management to drive decision making. It is therefore closely related to management science. Analytics may be used as input for human decisions or may drive fully automated decisions.
Often the focus of analysis is not the consumer but the product, portfolio, firm, industry or even the economy. For example, a retailer might be interested in predicting store-level demand for inventory management purposes. Or the Federal Reserve Board might be interested in predicting the unemployment rate for the next year.
Business intelligence (BI) consists of strategies, methodologies, and technologies used by enterprises for data analysis and management of business information. [1] Common functions of BI technologies include reporting, online analytical processing, analytics, dashboard development, data mining, process mining, complex event processing, business performance management, benchmarking, text ...
An intelligent decision support system (IDSS) is a decision support system that makes extensive use of artificial intelligence (AI) techniques. Use of AI techniques in management information systems has a long history – indeed terms such as "Knowledge-based systems" (KBS) and "intelligent systems" have been used since the early 1980s to describe components of management systems, but the term ...
Industrial artificial intelligence, or industrial AI, usually refers to the application of artificial intelligence to industry and business. Unlike general artificial intelligence which is a frontier research discipline to build computerized systems that perform tasks requiring human intelligence, industrial AI is more concerned with the application of such technologies to address industrial ...
Automated decision-making involves using data as input to be analyzed within a process, model, or algorithm or for learning and generating new models. [7] ADM systems may use and connect a wide range of data types and sources depending on the goals and contexts of the system, for example, sensor data for self-driving cars and robotics, identity data for security systems, demographic and ...
business dashboards; analytic applications; It may extend further to predictive analytics, or predictive analysis may form part of the analytic application - depending on both the subject matter under analysis, and the nature of the analysis required. Analytic applications are typically described as a subset of performance management.
Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. [2] In today's business world, data analysis plays a role in making decisions more scientific and helping businesses operate more effectively.