Search results
Results from the WOW.Com Content Network
A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. [1] Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur.
Like many other transcription factors, STATs are capable of recruiting co-activators such as CBP and p300, and these co-activators increase the rate of transcription of target genes. [2] The coactivators are able to do this by making genes on DNA more accessible to STATs and by recruiting proteins needed for transcription of genes.
Transcription activator-like effectors (TALEs) can be engineered to bind to practically any desired DNA sequence, so when combined with a nuclease, DNA can be cut at specific locations. [1] The restriction enzymes can be introduced into cells, for use in gene editing or for genome editing in situ , a technique known as genome editing with ...
In humans, about 70% of promoters located near the transcription start site of a gene (proximal promoters) contain a CpG island. [1] [2] CpG islands are generally 200 to 2000 base pairs long, have a C:G base pair content >50%, and have regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide and this occurs frequently in the linear sequence of bases along its 5′ → 3 ...
A coactivator is a type of transcriptional coregulator that binds to an activator (a transcription factor) to increase the rate of transcription of a gene or set of genes. [1] The activator contains a DNA binding domain that binds either to a DNA promoter site or a specific DNA regulatory sequence called an enhancer.
3. After the activating protein complex binds to the promoter, RNA polymerase easily binds and starts transcribing the target gene. 4. and 5. are additional scenarios where in 4. an insulator/inhibitor can bind to the DNA preventing activation for transcription and in 5. methylation can prevent the insulator from binding.
STAT3 is a member of the STAT protein family. In response to cytokines and growth factors, STAT3 is phosphorylated by receptor-associated Janus kinases (JAK), forms homo- or heterodimers, and translocates to the cell nucleus where it acts as a transcription activator.
STAT5 has been found to be constitutively phosphorylated in cancer cells, [4] implying that the protein is always present in its active form. This constant activation is brought about either by mutations or by aberrant expressions of cell signalling, resulting in poor regulation, or complete lack of control, of the activation of transcription ...