Search results
Results from the WOW.Com Content Network
Gamma prime (γ'): This phase constitutes the precipitate used to strengthen the alloy. It is an intermetallic phase based on Ni 3 (Ti,Al) which have an ordered FCC L1 2 structure. [ 10 ] The γ' phase is coherent with the matrix of the superalloy having a lattice parameter that varies by around 0.5%.
In these alloys the volume fraction of the γ' precipitates is as high as 80%. [7] Because of this high volume fraction, the evolution of these γ' precipitates during the alloys' life cycles is important: a major concern is the coarsening of these γ' precipitates at high temperature (800 to 1000 °C), which greatly reduces the alloys ...
In age-hardening or precipitation-strengthening varieties, small amounts of niobium combine with nickel to form the intermetallic compound Ni 3 Nb or gamma double prime (γ″). Gamma prime forms small cubic crystals that inhibit slip and creep effectively at elevated temperatures. The formation of gamma-prime crystals increases over time ...
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels, stainless steels, and duplex stainless steel.
Precipitation in solids is routinely used to synthesize nanoclusters. [12] In metallurgy, precipitation from a solid solution is also a way to strengthen alloys. Precipitation of ceramic phases in metallic alloys such as zirconium hydrides in zircaloy cladding of nuclear fuel pins can also render metallic alloys brittle and lead to their ...
Ostwald ripening is also the key process in the digestion and aging of precipitates, an important step in gravimetric analysis. The digested precipitate is generally purer, and easier to wash and filter. Ostwald ripening can also occur in emulsion systems, with molecules diffusing from small droplets to large ones through the continuous phase.
Mineral evolution is a recent hypothesis that provides historical context to mineralogy. It postulates that mineralogy on planets and moons becomes increasingly complex as a result of changes in the physical, chemical and biological environment.
Evolution of Homo antecessor. The last members of Paranthropus die out. 1 Ma First coyotes. 810 ka First wolves: 600 ka Evolution of Homo heidelbergensis. 400 ka First polar bears. 350 ka Evolution of Neanderthals. 300 ka Gigantopithecus, a giant relative of the orangutan from Asia dies out. 250 ka Anatomically modern humans appear in Africa.