Search results
Results from the WOW.Com Content Network
According to the sigma bond rule, the number of sigma bonds in a molecule is equivalent to the number of atoms plus the number of rings minus one. N σ = N atoms + N rings − 1. This rule is a special-case application of the Euler characteristic of the graph which represents the molecule. A molecule with no rings can be represented as a tree ...
This MO is called the bonding orbital and its energy is lower than that of the original atomic orbitals. A bond involving molecular orbitals which are symmetric with respect to any rotation around the bond axis is called a sigma bond (σ-bond). If the phase cycles once while rotating round the axis, the bond is a pi bond (π-bond).
In chemistry, sigma hole interactions (or σ-hole interactions) are a family of intermolecular forces that can occur between several classes of molecules and arise from an energetically stabilizing interaction between a positively-charged site, termed a sigma hole, and a negatively-charged site, typically a lone pair, on different atoms that are not covalently bonded to each other. [1]
For example, a bond between two s-orbital electrons is a sigma bond, because two spheres are always coaxial. In terms of bond order, single bonds have one sigma bond, double bonds consist of one sigma bond and one pi bond, and triple bonds contain one sigma bond and two pi bonds. However, the atomic orbitals for bonding may be hybrids.
Hyperconjugation affects several properties. [6] [10]Bond length: Hyperconjugation is suggested as a key factor in shortening of sigma bonds (σ bonds). For example, the single C–C bonds in 1,3-butadiene and propyne are approximately 1.46 Å in length, much less than the value of around 1.54 Å found in saturated hydrocarbons.
The reaction center can be a p-or sp n-orbital (Woodward-Hoffmann symbol ω), a conjugated system (π) or even a sigma bond (σ). The relationship is antarafacial when opposite faces of the π system or isolated orbital are involved in the process (think anti). For a σ bond, it corresponds to involvement of one "interior" lobe and one ...
In non-polar covalent bonds, the electronegativity difference between the bonded atoms is small, typically 0 to 0.3. Bonds within most organic compounds are described as covalent. The figure shows methane (CH 4), in which each hydrogen forms a covalent bond with the carbon. See sigma bonds and pi bonds for LCAO descriptions of such bonding. [22]
Sigmatropic rearrangements are concisely described by an order term [i,j], which is defined as the migration of a σ-bond adjacent to one or more π systems to a new position (i−1) and (j−1) atoms removed from the original location of the σ-bond. [3]