Search results
Results from the WOW.Com Content Network
For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.
On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6 × 10 −10, making it a weak base. In order for a species to have a strong conjugate base it has to be a very weak acid, like water.
Strong bases are leveling solvents for acids, weak bases are differentiating solvents for acids. In a leveling solvent, many acids are completely dissociated and are thus of the same strength. All acids tend to become indistinguishable in strength when dissolved in strongly basic solvents owing to the greater affinity of strong bases for protons.
In and of themselves, pH indicators are usually weak acids or weak bases. The general reaction scheme of acidic pH indicators in aqueous solutions can be formulated as: HInd (aq) + H 2 O (l) ⇌ H 3 O + (aq) + Ind − (aq) where, "HInd" is the acidic form and "Ind −" is the conjugate base of the indicator.
An example of an alkalimetric titration involving a strong acid is as follows: H 2 SO 4 + 2 OH − → SO 4 2-+ 2 H 2 O. In this case, the strong acid (H 2 SO 4) is neutralized by the base until all of the acid has reacted. This allows the viewer to calculate the concentration of the acid from the volume of the standard base that is used.
However, the acids and bases must differ greatly in strength, e.g. one strong acid and one very weak acid. [1] Therefore, the two acids must have a pK a (or pK b) difference that is as large as possible. For example, the following can be separated: Very weak acids like phenols (pK a around 10) from stronger acids like carboxylic acids [1] (pK a ...
Acetic acid is an example of a weak acid. The pH of the neutralized solution resulting from HA + OH − → H 2 O + A −. is not close to 7, as with a strong acid, but depends on the acid dissociation constant, K a, of the acid. The pH at the end-point or equivalence point in a titration may be calculated as follows.
Simple organic acids like formic or acetic acids are used for oil and gas well stimulation treatments. These organic acids are much less reactive with metals than are strong mineral acids like hydrochloric acid (HCl) or mixtures of HCl and hydrofluoric acid (HF). For this reason, organic acids are used at high temperatures or when long contact ...