Search results
Results from the WOW.Com Content Network
A shunt is a device that is designed to provide a low-resistance path for an electrical current in a circuit. It is typically used to divert current away from a system or component in order to prevent overcurrent .
Generator separately excited by battery Self exciting generators Series on left, shunt on right. A shunt generator is a type of electric generator in which field winding and armature winding are connected in parallel, and in which the armature supplies both the load current and the field current for the excitation (generator is therefore self excited).
A compound DC motor connects the armature and fields windings in a shunt and a series combination to give it characteristics of both a shunt and a series DC motor. [5] This motor is used when both a high starting torque and good speed regulation is needed. The motor can be connected in two arrangements: cumulatively or differentially.
a shunt, the simplest design, uses the main winding for the excitation power; an excitation boost system (EBS) is a shunt design with a separate small generator added to temporarily provide an energy boost when the main coil voltage drops (for example, due to a fault). The boost generator is not rated for permanent operation;
A compensation winding in a DC shunt motor is a winding in the field pole face plate that carries armature current to reduce stator field distortion.Its purpose is to reduce brush arcing and erosion in DC motors that are operated with weak fields, variable heavy loads or reversing operation such as steel-mill motors.
A piezoelectric motor or piezo motor is a type of electric motor based upon the change in shape of a piezoelectric material when an electric field is applied. Piezoelectric motors make use of the converse piezoelectric effect whereby the material produces acoustic or ultrasonic vibrations to produce linear or rotary motion. [ 85 ]
Usually utilization category is mentioned in most of the switch gear, with the above contactor stating to be used under AC1 - resistive load & AC3 for motor usage In electrical engineering utilization categories are defined by IEC standards [ 1 ] and indicate the type of electrical load and duty cycle of the loads to ease selection of ...
Fleming's left-hand rule. Fleming's left-hand rule for electric motors is one of a pair of visual mnemonics, the other being Fleming's right-hand rule for generators. [1] [2] [3] They were originated by John Ambrose Fleming, in the late 19th century, as a simple way of working out the direction of motion in an electric motor, or the direction of electric current in an electric generator.