Search results
Results from the WOW.Com Content Network
Structure of a perovskite with general chemical formula ABX 3.The red spheres are X atoms (usually oxygens), the blue spheres are B atoms (a smaller metal cation, such as Ti 4+), and the green spheres are the A atoms (a larger metal cation, such as Ca 2+).
Perovskite crystals may appear to have the cubic crystal form, but are often pseudocubic and actually crystallize in the orthorhombic system, as is the case for CaTiO 3 (strontium titanate, with the larger strontium cation in the A-site, is cubic). Perovskite crystals have been mistaken for galena; however, galena has a better metallic luster ...
In addition to these cations, gold was also shown to be a suitable candidate for cation exchange yielding a mixed-valent, and distorted, perovskite with the composition Cs 2 Au(I)Au(III)Br 6. [102] A-site cation exchange has also been shown to be a viable route for the transformation of CsPbBr 3 to MAPbBr 3 and from CsPbI 3 to FAPbI 3. [82]
The perovskite structure is frequently found for ternary oxides formed with one large (A) and one small cation (B). In this structure, there is a simple cubic array of B cations, with the A cations occupying the center of the cube, and the oxide atoms are sited at the center of the 12 edges of the simple cube. [8] [5] [6] [7]
Calcium titanate is obtained as orthorhombic crystals, more specifically perovskite structure. [3] In this motif, the Ti(IV) centers are octahedral and the Ca 2+ centers occupy a cage of 12 oxygen centres. Many useful materials adopt related structures, e.g. barium titanate or variations of the structure, e.g. yttrium barium copper oxide.
Ruddlesden-Popper (RP) phases are a type of perovskite structure that consists of two-dimensional perovskite-like slabs interleaved with cations.The general formula of an RP phase is A n+1 B n X 3n+1, where A and B are cations, X is an anion (e.g., oxygen), and n is the number of octahedral layers in the perovskite-like stack. [1]
The perovskite structure (first identified in the mineral perovskite) occurs in substances with the general formula ABX 3, where A is a metal that forms large cations, typically magnesium, ferrous iron, or calcium. B is another metal that forms smaller cations, typically silicon, although minor amounts of ferric iron and aluminum can occur. X ...
Lanthanum manganite is formed in the perovskite structure, consisting of oxygen octahedra with a central Mn atom. The cubic perovskite structure is distorted into an orthorhombic structure by a strong Jahn–Teller distortion of the oxygen octahedra. [2] LaMnO 3 often has lanthanum vacancies as evidenced by neutron scattering.