Search results
Results from the WOW.Com Content Network
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000
The following molar volumes and densities for the majority of the gaseous elements were calculated from the van der Waals equation of state, using the quoted values of the van der Waals constants. The source for the van der Waals constants and for the literature densities was: R. C. Weast (Ed.), Handbook of Chemistry and Physics (53rd Edn ...
List of chemical elements — with basic properties like standard atomic weight, m.p., b.p., abundance; Abundance of the chemical elements; Abundances of the elements (data page) — Earth's crust, sea water, Sun and Solar System
The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy. The adjacent figure shows the gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article).
A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z). [ 1 ] The definitive visualisation of all 118 elements is the periodic table of the elements , whose history along the principles of the periodic law was one of the founding ...
This small radius and high weight cause it to be expected to have an extremely high density of around 46 g·cm −3, over twice that of osmium, currently the most dense element known, at 22.61 g·cm −3; element 164 should be the second most dense element in the first 172 elements in the periodic table, with only its neighbor unhextrium ...
The first of these quantities is used in atomic physics, the second in chemistry, but both refer to the same basic property of the element. To convert from "value of ionization energy" to the corresponding "value of molar ionization energy", the conversion is: 1 eV = 96.48534 kJ/mol 1 kJ/mol = 0.0103642688 eV [12]
As quoted from this source in an online version of: J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 4; Table 4.1, Electronic Configuration and Properties of the Elements Touloukian, Y. S., Thermophysical Properties of Matter, Vol. 12, Thermal Expansion, Plenum, New York, 1975.