Search results
Results from the WOW.Com Content Network
The first problem involving a variational inequality was the Signorini problem, posed by Antonio Signorini in 1959 and solved by Gaetano Fichera in 1963, according to the references (Antman 1983, pp. 282–284) and (Fichera 1995): the first papers of the theory were (Fichera 1963) and (Fichera 1964a), (Fichera 1964b).
The obstacle problem is a classic motivating example in the mathematical study of variational inequalities and free boundary problems.The problem is to find the equilibrium position of an elastic membrane whose boundary is held fixed, and which is constrained to lie above a given obstacle.
Many free boundary problems can profitably be viewed as variational inequalities for the sake of analysis. To illustrate this point, we first turn to the minimization of a function F {\displaystyle F} of n {\displaystyle n} real variables over a convex set C {\displaystyle C} ; the minimizer x {\displaystyle x} is characterized by the condition
DVIs are useful for representing models involving both dynamics and inequality constraints. Examples of such problems include, for example, mechanical impact problems, electrical circuits with ideal diodes, Coulomb friction problems for contacting bodies, and dynamic economic and related problems such as dynamic traffic networks and networks of ...
A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.
Mixed Complementarity Problem (MCP) is a problem formulation in mathematical programming. Many well-known problem types are special cases of, or may be reduced to MCP. It is a generalization of nonlinear complementarity problem (NCP).
This is a problem in the calculus of variations, thus it is called the variational method. Since there are not many explicitly parametrized distribution families (all the classical distribution families, such as the normal distribution, the Gumbel distribution, etc, are far too simplistic to model the true distribution), we consider implicitly ...
A key example of an optimal stopping problem is the secretary problem. ... for a put option. The variational inequality is ...