Search results
Results from the WOW.Com Content Network
In this example implementation for a bitwise trie with bitmap, nodes are placed in an array of long (64-bit) integers. A node is identified by the position (index) in that array. The index of the root node marks the root of the trie. Nodes are allocated from unused space in that array, extending the array if necessary.
[23] [15]: 140 Every node in a Patricia tree contains an index, known as a "skip number", that stores the node's branching index to avoid empty subtrees during traversal. [ 15 ] : 140-141 A naive implementation of a trie consumes immense storage due to larger number of leaf-nodes caused by sparse distribution of keys; Patricia trees can be ...
One useful operation on such a tree is traversal: visiting all the items in order of the key. A simple recursive traversal algorithm that visits each node of a binary search tree is the following. Assume t is a pointer to a node, or nil. "Visiting" t can mean performing any action on the node t or its contents.
In object-oriented languages, an iterator, even if implicit, is often used as the means of traversal. The foreach statement in some languages has some defined order, processing each item in the collection from the first to the last. The foreach statement in many other languages, especially array programming languages, does not have any ...
For a multidimensional array, the element with indices i,j would have address B + c · i + d · j, where the coefficients c and d are the row and column address increments, respectively. More generally, in a k-dimensional array, the address of an element with indices i 1, i 2, ..., i k is B + c 1 · i 1 + c 2 · i 2 + … + c k · i k. For ...
Traversal of a singly linked list is simple, beginning at the first node and following each next link until reaching the end: node := list.firstNode while node not null (do something with node.data) node := node.next The following code inserts a node after an existing node in a singly linked list. The diagram shows how it works.
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
Suffix arrays are closely related to suffix trees: . Suffix arrays can be constructed by performing a depth-first traversal of a suffix tree. The suffix array corresponds to the leaf-labels given in the order in which these are visited during the traversal, if edges are visited in the lexicographical order of their first character.