Search results
Results from the WOW.Com Content Network
A phase-type distribution is a probability distribution constructed by a convolution or mixture of exponential distributions. [1] It results from a system of one or more inter-related Poisson processes occurring in sequence, or phases. The sequence in which each of the phases occurs may itself be a stochastic process.
One of the simplest pivotal quantities is the z-score.Given a normal distribution with mean and variance , and an observation 'x', the z-score: =, has distribution (,) – a normal distribution with mean 0 and variance 1.
The discrete phase-type distribution is a probability distribution that results from a system of one or more inter-related geometric distributions occurring in sequence, or phases. The sequence in which each of the phases occur may itself be a stochastic process .
Looking up the z-score in a table of the standard normal distribution cumulative probability, we find that the probability of observing a standard normal value below −2.47 is approximately 0.5 − 0.4932 = 0.0068.
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
In probability and statistics, the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations. The approximate value of this number is 1.96 , meaning that 95% of the area under a normal curve lies within approximately 1.96 standard deviations of the mean .
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.
The probability generating function is an example of a generating function of a sequence: see also formal power series. It is equivalent to, and sometimes called, the z-transform of the probability mass function.