Search results
Results from the WOW.Com Content Network
Sulfuric(IV) acid (United Kingdom spelling: sulphuric(IV) acid), also known as sulfurous (UK: sulphurous) acid and thionic acid, [citation needed] is the chemical compound with the formula H 2 SO 3. Raman spectra of solutions of sulfur dioxide in water show only signals due to the SO 2 molecule and the bisulfite ion, HSO − 3 . [ 2 ]
The oleum is then diluted with water to form concentrated sulfuric acid. H 2 SO 4 + SO 3 → H 2 S 2 O 7 H 2 S 2 O 7 + H 2 O → 2 H 2 SO 4. Directly dissolving SO 3 in water, called the "wet sulfuric acid process", is rarely practiced because the reaction is extremely exothermic, resulting in a hot aerosol of sulfuric acid that requires ...
However, SO 3 added to concentrated sulfuric acid readily dissolves, forming oleum which can then be diluted with water to produce additional concentrated sulfuric acid. [4] Typically, above concentrations of 98.3%, sulfuric acid will undergo a spontaneous decomposition into sulfur trioxide and water H 2 SO 4 ⇌ SO 3 + H 2 O
Examples of strong acids are hydrochloric acid (), perchloric acid (), nitric acid and sulfuric acid (). A weak acid is only partially dissociated, or is partly ionized in water with both the undissociated acid and its dissociation products being present, in solution, in equilibrium with each other.
in the condensation of the water-vapour of the air on the cold surface of a glass; in the capillarity of hair, wool, cotton, wood shavings, etc.; in the imbibition of water from the air by gelatine; in the deliquescence of common salt; in the absorption of water from the air by concentrated sulphuric acid; in the behaviour of quicklime". [4]
C 6 H 6 + H 2 SO 4 → C 6 H 5 SO 3 H + H 2 O. Sulfur trioxide or its protonated derivative is the actual electrophile in this electrophilic aromatic substitution. To drive the equilibrium, dehydrating agents such as thionyl chloride can be added: [2] C 6 H 6 + H 2 SO 4 + SOCl 2 → C 6 H 5 SO 3 H + SO 2 + 2 HCl. Historically, mercurous sulfate ...
It is slightly soluble in water and acts as a weak acid (pK a = 6.9 in 0.01–0.1 mol/litre solutions at 18 °C), giving the hydrosulfide ion HS −. Hydrogen sulfide and its solutions are colorless. When exposed to air, it slowly oxidizes to form elemental sulfur, which is not soluble in water. The sulfide anion S 2− is not formed in aqueous ...
The decomposition products can include sulfur, sulfur dioxide, hydrogen sulfide, polysulfanes, sulfuric acid and polythionates, depending on the reaction conditions. [6] Anhydrous methods of producing the acid were developed by Max Schmidt: [6] [7] H 2 S + SO 3 → H 2 S 2 O 3 Na 2 S 2 O 3 + 2 HCl → 2 NaCl + H 2 S 2 O 3 HSO 3 Cl + H 2 S → ...