enow.com Web Search

  1. Ad

    related to: aerodynamic efficiency of a wing car wash equipment catalog book

Search results

  1. Results from the WOW.Com Content Network
  2. Washout (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Washout_(aeronautics)

    (This can be described as aerodynamic wash-in.) Winglets also promote a greater bending moment at the wing root, possibly necessitating a heavier wing structure. Installation of winglets may necessitate greater aerodynamic washout in order to provide the required resistance to spinning, or to optimise the spanwise lift distribution.

  3. Glossary of aerospace engineering - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_aerospace...

    Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [23] Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving fuel economy in aircraft.

  4. Oswald efficiency number - Wikipedia

    en.wikipedia.org/wiki/Oswald_efficiency_number

    For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85. At supersonic speeds, Oswald efficiency number decreases substantially. For example, at Mach 1.2 Oswald efficiency number is likely to be between 0.3 and 0.5. [1]

  5. Closed wing - Wikipedia

    en.wikipedia.org/wiki/Closed_wing

    Nonplanar wings: results for the optimal aerodynamic efficiency ratio ε. The parameter ε is the optimal aerodynamic efficiency ratio [25] and represents the ratio between the aerodynamic efficiency of a given non-planar wing and the corresponding efficiency of a reference classical cantilevered wing with the same wing span and total lift ...

  6. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [ 1 ] Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving the fuel economy in powered airplanes and the gliding ...

  7. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

  8. Downwash - Wikipedia

    en.wikipedia.org/wiki/Downwash

    The effect of downwash from a hovering Sikorsky Seahawk is clearly visible on the surface of water below.. In aeronautics, downwash is the change in direction of air deflected by the aerodynamic action of an airfoil, wing, or helicopter rotor blade in motion, as part of the process of producing lift. [1]

  9. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    The Lanchester-Prandtl lifting-line theory [1] is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing from the wing's geometry. [2] The theory was expressed independently [3] by Frederick W. Lanchester in 1907, [4] and by Ludwig Prandtl in 1918–1919 [5] after working with Albert Betz and Max Munk ...

  1. Ad

    related to: aerodynamic efficiency of a wing car wash equipment catalog book