Search results
Results from the WOW.Com Content Network
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.
One possible definition of the approximate string matching problem is the following: Given a pattern string =... and a text string = …, find a substring ′, = ′ … in T, which, of all substrings of T, has the smallest edit distance to the pattern P.
P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.
The similarity of two strings and is determined by this formula: twice the number of matching characters divided by the total number of characters of both strings. The matching characters are defined as some longest common substring [3] plus recursively the number of matching characters in the non-matching regions on both sides of the longest common substring: [2] [4]
It is a simplification of the Boyer–Moore string-search algorithm which is related to the Knuth–Morris–Pratt algorithm. The algorithm trades space for time in order to obtain an average-case complexity of O(n) on random text, although it has O(nm) in the worst case, where the length of the pattern is m and the length of the search string ...
Naively computing the hash value for the substring s[i+1..i+m] requires O(m) time because each character is examined. Since the hash computation is done on each loop, the algorithm with a naive hash computation requires O(mn) time, the same complexity as a straightforward string matching algorithm. For speed, the hash must be computed in ...
A string is generally considered as a data type and is often implemented as an array data structure of bytes (or words) that stores a sequence of elements, typically characters, using some character encoding. String may also denote more general arrays or other sequence (or list) data types and structures.