Search results
Results from the WOW.Com Content Network
For example, if the summands x i are uncorrelated random numbers with zero mean, the sum is a random walk and the condition number will grow proportional to . On the other hand, for random inputs with nonzero mean the condition number asymptotes to a finite constant as n → ∞ {\displaystyle n\to \infty } .
In mathematics, more specifically in linear algebra, the spark of a matrix is the smallest integer such that there exists a set of columns in which are linearly dependent. If all the columns are linearly independent, s p a r k ( A ) {\displaystyle \mathrm {spark} (A)} is usually defined to be 1 more than the number of rows.
It is used to prove Kronecker's lemma, which in turn, is used to prove a version of the strong law of large numbers under variance constraints. It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2]
Spark Core is the foundation of the overall project. It provides distributed task dispatching, scheduling, and basic I/O functionalities, exposed through an application programming interface (for Java, Python, Scala, .NET [16] and R) centered on the RDD abstraction (the Java API is available for other JVM languages, but is also usable for some other non-JVM languages that can connect to the ...
The technique of the previous example may also be applied to other Dirichlet series. If a n = μ ( n ) {\displaystyle a_{n}=\mu (n)} is the Möbius function and ϕ ( x ) = x − s {\displaystyle \phi (x)=x^{-s}} , then A ( x ) = M ( x ) = ∑ n ≤ x μ ( n ) {\displaystyle A(x)=M(x)=\sum _{n\leq x}\mu (n)} is Mertens function and
For example, if we define the real numbers and then define the direct sum is said to be external. If, on the other hand, we first define some algebraic structure S {\displaystyle S} and then write S {\displaystyle S} as a direct sum of two substructures V {\displaystyle V} and W {\displaystyle W} , then the direct sum is said to be internal.
One of the most common examples of an algebraic data type is the singly linked list. A list type is a sum type with two variants, Nil for an empty list and Cons x xs for the combination of a new element x with a list xs to create a new list. Here is an example of how a singly linked list would be declared in Haskell:
Specific choices of give different types of Riemann sums: . If = for all i, the method is the left rule [2] [3] and gives a left Riemann sum.; If = for all i, the method is the right rule [2] [3] and gives a right Riemann sum.