Search results
Results from the WOW.Com Content Network
Nondimensionalization determines in a systematic manner the characteristic units of a system to use, without relying heavily on prior knowledge of the system's intrinsic properties (one should not confuse characteristic units of a system with natural units of nature). In fact, nondimensionalization can suggest the parameters which should be ...
This may provide possibilities to neglect terms in (certain areas of) the considered flow. Further, non-dimensionalized Navier–Stokes equations can be beneficial if one is posed with similar physical situations – that is problems where the only changes are those of the basic dimensions of the system.
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.
The theorem provides a method for computing sets of dimensionless parameters from the given variables, or nondimensionalization, even if the form of the equation is still unknown. The Buckingham π theorem indicates that validity of the laws of physics does not depend on a specific unit system.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The equations simplify slightly when a system of quantities is chosen in the speed of light, c, is used for nondimensionalization, so that, for example, seconds and lightseconds are interchangeable, and c = 1. Further changes are possible by absorbing factors of 4π.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes.