Search results
Results from the WOW.Com Content Network
The dominant radiative scattering processes in the atmosphere are Rayleigh scattering and Mie scattering; they are elastic, meaning that a photon of light can be deviated from its path without being absorbed and without changing wavelength. Under an overcast sky, there is no direct sunlight, and all light results from diffused skylight radiation.
On a sunny day, Rayleigh scattering gives the sky a blue gradient, darkest around the zenith and brightest near the horizon. Light rays coming from the zenith take the shortest-possible path (1 ⁄ 38) through the air mass, yielding less scattering. Light rays coming from the horizon take the longest-possible path through the air, yielding more ...
Atmospheric refraction of the light from a star is zero in the zenith, less than 1′ (one arc-minute) at 45° apparent altitude, and still only 5.3′ at 10° altitude; it quickly increases as altitude decreases, reaching 9.9′ at 5° altitude, 18.4′ at 2° altitude, and 35.4′ at the horizon; [4] all values are for 10 °C and 1013.25 hPa ...
Atmospheric scattering plays a role in removing higher frequencies from direct sunlight and scattering it about the sky. [2] This is why the sky appears blue and the sun yellow — more of the higher-frequency blue light arrives at the observer via indirect scattered paths; and less blue light follows the direct path, giving the sun a yellow ...
The Rayleigh sky model describes the observed polarization pattern of the daytime sky.Within the atmosphere, Rayleigh scattering of light by air molecules, water, dust, and aerosols causes the sky's light to have a defined polarization pattern.
The green line Angstrom observed is in fact an emission line with a wavelength of 557.7 nm, caused by the recombination of oxygen in the upper atmosphere. Airglow is the collective name of the various processes in the upper atmosphere that result in the emission of photons, with the driving force being primarily UV radiation from the Sun ...
the blackbody spectrum of sunlight coming into the Earth's atmosphere, Rayleigh scattering of that light off oxygen and nitrogen molecules, and; the response of the human visual system. The strong wavelength dependence of the Rayleigh scattering (~λ −4) means that shorter wavelengths are scattered more strongly than longer wavelengths. This ...
Mie scattering (sometimes referred to as a non-molecular scattering or aerosol particle scattering) takes place in the lower 4,500 m (15,000 ft) of the atmosphere, where many essentially spherical particles with diameters approximately equal to the wavelength of the incident ray may be present. Mie scattering theory has no upper size limitation ...