enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  3. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.

  4. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  5. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. [4]

  6. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    The coordinates (,) have a simple relation to the distances to the foci and . For any point in the plane, the sum d 1 + d 2 {\displaystyle d_{1}+d_{2}} of its distances to the foci equals 2 a σ {\displaystyle 2a\sigma } , whereas their difference d 1 − d 2 {\displaystyle d_{1}-d_{2}} equals 2 a τ {\displaystyle 2a\tau } .

  7. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.

  8. List of interactive geometry software - Wikipedia

    en.wikipedia.org/wiki/List_of_interactive...

    Interactive geometry software (IGS) or dynamic geometry environments (DGEs) are computer programs which allow one to create and then manipulate geometric constructions, primarily in plane geometry. In most IGS, one starts construction by putting a few points and using them to define new objects such as lines, circles or other points. After some ...

  9. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    The center of the ellipse is point O, and the focus is point F. Consider the ellipse with equation given by: + =, where a is the semi-major axis and b is the semi-minor axis. For a point on the ellipse, P = P(x, y), representing the position of an orbiting body in an elliptical orbit, the eccentric anomaly is the angle E in the